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ABSTRACT 
 
         A crucial aspect of empirical research based on  ARIMA(p,q)  model is the choice of the appropriate  lag order. 

Several criteria have been used  in order to identify the appropriate order of a ARIMA(p,q) process. In this paper we 

investigate the effects of using a variation of selection criteria under different temporal aggregation levels. We don’t spend 

our attention  in determining the appropriate   order but on the effects of using the above selection criteria on the dynamic 

characteristics (impulse responses) and the forecasting properties of the ARIMA(p,q)  process.  The conducted Monte Carlo 

simulation experiments show that   the use of temporally aggregated data can affect seriously  the impulse responses  and the 

forecasting properties of the ARIMA model. 
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INTRODUCTION 
 
Temporal aggregation poses many interesting questions which have been explored in time series analysis and 
which yet remain to be explored. An early example  of research in this area is Quenouille (1957), where the 
temporal aggregation of ARIMA  processes is studied. Amemiya and Wu (1972), and Brewer (1973) review and 
generalize Quenouille's result by including exogenous variables. Zellner and Montmarquette (1971) discuss the 
effects of temporal aggregation on estimation and testing. Engle (1969) and Wei (1978) analyze the effects of 
temporal aggregation on parameter estimation in a distributed lag model. Granger (1987) discusses the 
implications of aggregation on systems with common factors. Other contributions in this area include Tiao (1972), 
Stram and Wei (1986), Weiss (1984), Granger and Lee (1999), and Marcellino (1999), to name but a few. 
 
In this paper, we examine the impact of  temporal aggregation on the dynamic analysis and the forecasting 
properties of a stable ARIMA(p,q) process.  There is a sizable theoretical literature that investigates the impact of 
temporal aggregation on ARIMA models (see Wei, 1990, and references therein).These studies  are theoretical 
and focus on the effects of temporal aggregation on the  orders p an q of the ARIMA process. This study using 
Monte Carlo simulation techniques, focus on the effects of using  different  selection criteria on the dynamic 
impulse responses and the forecasting properties of a stable ARMA process estimated at 16 different aggregation 
levels. 
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This article is organized as follows. Section II presents  some  selection criteria used  to determine the appropriate  
p and q order of the ARIMA process. Section III introduces the design of the simulation procedure. Section IV 
provides the simulation results and the last section concludes. 
 
 
THE OPTIMAL LAG ORDER IN AN ARIMA MODEL 
 
 We now review some  selection criteria for the order of an ARIMA(p,q) process. These selection criteria are used 
very often  for the selection of the appropriate   order of the p and q dimensions  of an ARIMA process. These 
criteria are:   
 
 Akaike Information Criterion (AIC) Test(Akaike 1969) 

( ) ( )qpTqpAIC e ++= 2log, 2σ                                                    (1) 
 

Corrected Akaike Information Criterion  cAIC  Test  (Hurvichm, C. M. and Tsai, C. 1993) 
( ) ( ) )1)(2log(2log2)2log(22(12log, 2 −+−−+++−++= qptTTqpTqpAIC ec πσ           (2)                                    

 
Bayesian Information Criterion (BIC) Test ( Amemiya, T. and R.Y. Wu  1972)  

( ) ( ) ( )[ ]TqpqpTTqpBIC e /1loglog, 2 +−−−−= ∗σ                    (3) 

                    ( ) ( ) ( ) ( )[ ]1/loglog 221 −+++++ ∗−
eyqpqpTqp σσ  

 
Schwarz (SC) Test(Schwarz 1978) 

( ) ( ) TqpTqpSC e loglog, 2 ++= ∗σ                                              (4) 
 
Hannan – Quinn Criterion Test(Hannan  and Quinn 1979) 

( ) ( ) ( )[ ]TTcqpqpHQ e /logloglog, 2 ++= ∗σ     2>c                          (5) 
 
Bayesian Estimation Method (BEC) Test(Geweke and Meese 1981) 

( ) ( ) ( )[ ]LTTqpqpBEC Le −++= ∗ /log, 22 σσ      L=maximum number of p and q                 (6) 
 

In addition to the above six criteria we used as well the RootMeanSquareError, the 
2R  and the adjusted 

2_ Radj . 
 
 
THE DESIGN OF THE MONTE CARLO SIMULATION 

 
 
The simulations are conducted using the following stationary ARIMA(p,q) process: 
 

   tttttt vvyyyy ++−−+= −−−− 1321 785.01065.08453.0315.03        (7) 

    ( )025,0...~ DINvt                 (8) 
The impulse response function of the above process is given in figure 1. This impulse response has a duration of 
141 periods and max=1.1 and min=-1.19. 
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Impulse Responses
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Figure 1. The Impulse Response of the stochastic  process  (7)  &  (8). 
 
 In order to schematize the effects of temporal aggregation on the dynamic characteristics and the 
forecasting properties of the ARIMA(p,q) process (7)-(8) we applied 16 different level of temporal aggregation. 
For  each of the 16 different level of temporal aggregation  we estimate the process (7)-(8) , selecting the 
appropriate lag order  using the above analysed selection criteria and obtained the impulse responses and the 
analogous forecasts. The  total number of the simulated observations was 1400  at the highest level of temporal 
disaggregation  and  the experiment was replicated 3000 times. The number of the forecasted periods at the 
highest level of temporal aggregation was 4.  
  

Temporal aggregates are formed by averaging basic observations over nonoverlapping intervals.  Let   
A

Ty    
represent the temporally aggregated data: 

                                                   t
A

T Cyy =                                      (9) 

  where  
A

Tr  is the  temporal aggregated data , 16,....,3,2,1=j  is the time aggregation level and   C is a    time 
aggregation1 matrix of the form :  
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1For more about these Time - Aggregation relations using matrix approach, see: Gilbert C., 1977., pp. 223-225. A similar aggregation 

formulation is  t

m
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=

=   where L is the backshift operator on t. 

MAX = 1,1 

Durability=141 periods (highest level of temporal disaggregation
MIN=-1,19 
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         In the simulation experiment we performed 3,000 iterations at 16 different but nested time aggregation 
levels, in contrast with analogous research in which three or four (at the most) different time aggregation levels 
have been used. 
 
 
The steps of realization of these Monte Carlo experiments are the following: 
 

• On the basis of the relations (7)-(8) in each iteration, we obtained 1400 simulated observations of the 
dependent variable. 

• For 16 different levels of time aggregation   we estimated the ARIMA process  using a Gauss-Newton2 
nonlinear estimation technique.  

• The estimated specification was then used to obtain ex-post forecasts for 4  observations at the highest 
level of time aggregation (j=16). These forecasts were compared with the corresponding simulated 
observations of the depended  variable  at the  corresponding  level of  time aggregation ( j=2,3, …,16).  
In addition, we conducted analogous forecasting comparisons of these forecasts at a specific time 
aggregation level(j=1,2,…,16), at the highest level of which j=16. To  do this happen we aggregate the 
forecasts  at the analogous temporal aggregation level , using the relation: 

 
 

                                                   t
FF

T Cyy =                                      (11) 
 
with C an aggregation matrix defined as in (10). The comparisons were made between the actual  values at the 
highest temporal aggregation level and the aggregated forecasts. 
 
In order to study the effects of the degree of time aggregation on the   quantitative and qualitative characteristics 
of the ex-post forecasting ability of the model, we used some well known forecasting criteria3.  
Impulse responses comparisons were made  after aggregating (for j=1,2,……,16) the simulated ‘actual’ responses 

at the highest level of temporal aggregation and the response on the estimated model and the 
thj  level of temporal 

aggregation. The criterion we used was the : 
 
Mean Square Error :  

                                     
jj

Dur

J
j

A
j DureimpuleimpulMSE

j

/)__( 2

1
−= ∑

=     (12) 

                                                                                                   16,....,2,1=j  

                                                                                 )_(_ jj
A eimpulCeimpul =                   (13) 

 
Where: 
 

=j
Aeimpul _  Temporally Aggregated estimated impulse at  the

thj degree of temporal aggregation. 
 

=jeimpul _ estimated impulse at  the 
thj   degree of temporal aggregation. 

=jDur Estimated  Duration of the impulse response at the  
thj  level of temporal aggregation. 

 
In order to get an  idea about this experiment  in Figure 2 we present graphically the impulse responses between 
the estimated and the analogous  time  aggregated responses at the j=1,2,….,16 different level of temporal 
aggregation. 

                                                      
2 Judge G., Griffiths W., Hill C., Lutkepohl H. and Lee Tsoung-Chao, 1984.   
3 For more see the Appendix of this paper. 
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Impulse Responces at Different of Time Aggregation Levels
Simulation Results
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Figure 2. Impulse Responses at Different Levels of Temporal Aggregation   
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THE SIMULATION RESULTS 

 
According the simulations conducted in the previous section , we may conclude very briefly the following about 
the effects of temporal aggregation  on the forecasting properties and the dynamic characteristics of the estimated 
ARIMA  process. 
 
    Effects on the forecasting  ability of the ARIMA process. 
 

• As the level of temporal aggregation increases ,the mean Root Mean Square Forecasts  Error ( RMSE4 )  
which results from the forecast of an ARIMA (p,,q) process, increases as well.(Table 1). These results 
confirms that the forecast can be more effective  when a variable is used in its highest  level of temporal 
aggregation. The smallest  RMSE   is given by the Hannan & Quinn selection  criterion. 

 
• The quality of the forecast made at the different level of temporal aggregation is analysed in Tables 1A 

and 1B . It is obvious that as the degree of temporal aggregation increase, the Mean Bias Proportion of the 
Mean Forecasts Error , increases rapidly , indicating that the temporal aggregations influence  negatively 
the quality of the forecast made (Table 1A). The same time, according to our results (Table 1B), as the 
degree of temporal aggregation increases, the variance proportion of  the MSE decomposition increases as 
well, but not the same  degree for all the selection criteria.  

 
• In Tables 2, 2A and 2B we present the same results with the previous tables, but with the only difference, 

that the comparisons are made  on the higher degree of temporal aggregation. So , we have 
transformed(aggregate)  our  forecasts into forecasts to the highest level of temporal aggregation which is 
level 16. This means that each forecast has aggregated accordingly, so that to reach  the level 16 of 
temporal aggregation and to allow for the analogous comparisons.  

 
 In Table 2 , we present the mean Root Mean Square Forecasts  Error between the actual and the forecasted 

time series, having aggregated the forecast to the highest level of temporal aggregation as follows: 

                                                                         t
FF

T Cyy =                                      (14) 

                                                                         16,....,2,1=j  
                  with the matrix C as defined in (10). 
 

Based on the results on Table 2,2A and 2B  we may conclude that in most of the times  when we want to 
do effective forecasts  is preferable  to use our data to the highest level of temporal disaggregation and 
after to aggregate them to the level   we wanted them to forecast . Moreover , the results in Tables 2A and 
2B , confirm that the use of data of high level of temporal aggregation decreases the effectiveness of our 
forecasts not only quantitative but also qualitative. 

• Finally, in Table 3 we present the Mean RMSE between the estimated actual response at the
thj  degree of 

temporal aggregation and the aggregated to the same degree ‘actual’5 response. According to our results , 
it is obvious that the degree of temporal aggregation affects the impulse response functions of the 
specified ARIMA model. This means that  when we are interested for effective dynamic analysis results it 
is important to use our data in the highest level of temporal aggregation. 

 
CONCLUSION 

 
In this short paper we analyse the effects of Temporal Aggregation on the dynamic characteristics and the 

forecasting properties of a stable ARMA(p,q)  process. Using Monte Carlo techniques we may conclude  that  
when we are interested for effective dynamic analysis   and forecasts through an ARIMA process , it is important 

                                                      
4 The Root Mean Square Forecasts Error  is defined as:  

( ) )1(
1

2∑ −=
T

t
FA

t yy
T

RMSE  where  =t
Ay Actual data , =t

Fy Forecasted data  and T=the number of forecasting periods. 

5 Simulated in Figure 1 impulse response. 
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to use  our data in the highest level of temporal aggregation. 
  
 As the degree of temporal aggregation increases , the Mean Root Mean Square Forecasts Error  increases 
rapidly when we compare our forecasts in the highest and the lowest degree of temporal aggregation. The same 
time the impulse responses  functions exhibit a high Mean Root Mean Square Error  between the simulated 
(actual) response and the temporal aggregated response at  the analogous degree of temporal aggregation. This 
means that  when we are interested for effective  dynamic analysis  and effective forecasts  it is important to use 
our data in the highest level of temporal aggregation. 
 
 The results of our experiments complements other analogous theoretical  researches for the effects of 
temporal aggregation on estimating  an ARIMA (p,q) process. 
 
TABLES    
Table 1.  Mean Root Mean Square Forecasts Error ( RMSE6 ) of ARIMA (p,q) forecasts at different level of Temporal 
Aggregation and different selections criteria. 

Temporal 

Aggregation 
Level  AIC  AICc  BIC  SC HQ  SBC 

2_ RAdj
   

2R  MSE 

1 1,199037 1,197358 1,197098 1,19842 1,197016 1,197753 1,19831 1,198178 1,198602 

5 1,14768 1,100603 1,066996 1,135062 1,091911 1,125288 1,134641 1,13393 1,135112 

10 2,55012 2,401497 2,284805 2,517395 2,376588 2,484209 2,477093 2,495859 2,508136 

15 4,608609 4,040792 3,767517 4,444853 4,04362 4,362437 4,346196 4,407657 4,410651 

16 5,962376 5,042412 4,987815 5,808181 5,037412 5,246457 5,576265 5,690924 5,735879 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

 

Table 1A.  Mean Bias Proportion7   of the ARIMA (p,q) forecast at different level of Temporal Aggregation and 
different selections criteria. 
 

Temporal 

Aggregation 

 level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 0,003711 0,003185 0,002481 0,003505 0,002896 0,003387 0,003516 0,003519 0,003572 

5 0,089861 0,06532 0,039519 0,083189 0,058939 0,082242 0,083606 0,082545 0,083336 

10 0,152194 0,129843 0,092022 0,145019 0,12196 0,153385 0,136585 0,139244 0,141664 

15 0,214333 0,208008 0,161176 0,198552 0,208013 0,242752 0,195137 0,193176 0,19335 

16 0,188436 0,195009 0,178939 0,178517 0,194832 0,200364 0,169778 0,169373 0,172413 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

Table 1B. Mean Variance Proportion8 of the MSE forecast decomposition at different level of Temporal Aggregation 

                                                      
6 The Root Mean Square Forecasts Error  is defined as:  

( ) )1(
1

2∑ −=
T

t
FA

t yy
T

RMSE  where  =t
Ay Actual data , =t

Fy Forecasted data ,  t
F

t
A

yy ,   =  mean values and T=the number of 

forecasting periods. 
 
7 The  Bias Proportion of the Mean Forecasts Error   is defined as:  

( ) ( )22 1/ ∑ −−= t
AF

t
AFM yy

T
yyU  where  =t

Ay Actual data , =t
Fy Forecasted data  and T=the number of forecasting periods 

8  The Variance  Proportion of the Mean Forecasts Error   is defined as: 
( )

( )∑ −

−
=

2

2

1
t

AF
t

y
A

y
F

S

yy
T

SSU  
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and different selections criteria. 
Temporal 

Aggregation 

 level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 0,57273 0,574258 0,575168 0,573093 0,574692 0,573634 0,573248 0,573378 0,573135 

5 0,793897 0,904233 0,931747 0,813639 0,913306 0,864593 0,819242 0,816723 0,814141 

10 0,661386 0,799385 0,8438 0,678092 0,809608 0,73934 0,696632 0,687451 0,680817 

15 0,490503 0,698526 0,758639 0,511699 0,69863 0,595575 0,538348 0,526044 0,519605 

16 0,451592 0,666307 0,703906 0,467429 0,666743 0,593505 0,505262 0,486956 0,4764 

 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

 

Table 2: Mean Root Mean Square Forecasts Error ( RMSE9 ) between the actual and the forecasted time series at the 
highest (j=16) level of temporal aggregation at  different selections criteria. 
 

Temporal 

Aggregation 

 Level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 4,494094 4,31023 4,048282 4,434273 4,209698 4,398583 4,444214 4,435701 4,460074 

5 35,77977 28,15364 19,78124 33,21705 26,14772 33,33639 33,35758 32,96164 33,23595 

10 61,68502 54,65241 40,68359 58,44444 51,65727 62,03502 54,79268 55,80494 57,00541 

15 49,11331 47,45389 37,84542 45,23678 47,55765 54,55549 44,26951 44,35888 44,11867 

16 37,9221 37,94207 36,55503 36,06123 37,80108 37,5302 33,90067 34,09132 34,69358 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

 
Table 2A. Mean Bias Proportion between the actual and the forecasted time series at the highest (j=16) level of 
temporal aggregation at  different selections criteria. 

Temporal 

Aggregation  

Level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 0,301669 0,278657 0,249502 0,296247 0,266011 0,291236 0,296749 0,294943 0,297659 

5 0,631671 0,537574 0,435078 0,627636 0,509086 0,605948 0,630383 0,627792 0,628591 

10 0,684332 0,60002 0,514018 0,680615 0,581962 0,676642 0,665291 0,672939 0,677126 

16 0,60237 0,584108 0,546261 0,590133 0,583737 0,618307 0,576859 0,576468 0,582523 

17 0,590024 0,605129 0,568298 0,57756 0,60592 0,615559 0,558725 0,561178 0,565312 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

 

                                                                                                                                                                                        

where  =t
Ay Actual data , =t

Fy Forecasted data , =y
F

y
A SS , Standard Deviation  of Forecasted and Actual values and T=the number of 

forecasting periods  
 
 
 
 
 
9 The Root Mean Square Forecasts Error  is defined as:  

( ) )1(
1

2∑ −=
T

t
FA

t yy
T

RMSE  where  =t
Ay Actual data , =t

Fy Forecasted data  and T=the number of forecasting periods. 
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Table 2B. Mean Variance Proportion   between the actual and the forecasted time series at the highest (j=16) level of 
temporal aggregation at  different selections criteria. 
  

Temporal 

Aggregation 

 Level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 0,467827 0,480843 0,49922 0,471341 0,489719 0,474023 0,471256 0,472771 0,231649 

5 0,314252 0,402894 0,476395 0,319246 0,425831 0,340518 0,316414 0,319033 0,052632 

10 0,229254 0,290149 0,345188 0,234713 0,304719 0,227774 0,245326 0,24174 0,083425 

15 0,244395 0,281403 0,338897 0,256921 0,281542 0,21725 0,261934 0,262348 0,127556 

16 0,23368 0,294474 0,329176 0,244087 0,29499 0,250327 0,259445 0,255957 0,166335 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 

 

Table 3. Mean MSE between the estimated actual response at the jth degree of temporal aggregation and the 
aggregated to the same temporal aggregation degree of the actual response. 
 

Temporal 

Aggregation  

Level  AIC  AICc  BIC  SC HQ  SBC 
2_ RAdj

   
2R  MSE 

1 1,760533 1,72424 1,718443 1,693042 1,80346 1,626019 1,693349 1,692709 1,760388 

5 12,97921 21,60762 11,14216 8,952541 24,09635 14,49629 5,54555 4,455917 3,972629 

10 11,897382 11,81666 15,84547 12,298239 12,5282 17,393704 8,207651 6,742036 12,465814 

15 21,033535 15,75483 16,9814 11,21335 25,75866 13,70895 11,843247 11,478211 11,328278 

16 21,481326 20,47592 22,79465 21,681013 20,35382 25,261796 12,331015 11,968766 11,771427 

 

Source: Our Estimates(Simulation Results).       

AIC & AICC= Akaike’s information criterion and its corrected form, respectively; BIC =  Bayesian information criterion;  HQ  = Hannan and Quinn information criterion; 

SBC=Schwarz  criterion; 
2_ RAdj

 = Adjusted R2; 
2R   ; MSE = Mean Square Error 
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