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ABSTRACT

A crucial aspect of empirical research based on ARIMA(p,q) model is the choice of the appropriate lag order.
Several criteria have been used in order to identify the appropriate order of a ARIMA(p,q) process. In this paper we
investigate the effects of using a variation of selection criteria under different temporal aggregation levels. We don’t spend
our attention in determining the appropriate order but on the effects of using the above selection criteria on the dynamic
characteristics (impulse responses) and the forecasting properties of the ARIMA(p,q) process. The conducted Monte Carlo
simulation experiments show that the use of temporally aggregated data can affect seriously the impulse responses and the
forecasting properties of the ARIMA model.
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INTRODUCTION

Temporal aggregation poses many interesting questions which have been explored in time series analysis and
which yet remain to be explored. An early example of research in this area is Quenouille (1957), where the
temporal aggregation of ARIMA processes is studied. Amemiya and Wu (1972), and Brewer (1973) review and
generalize Quenouille's result by including exogenous variables. Zellner and Montmarquette (1971) discuss the
effects of temporal aggregation on estimation and testing. Engle (1969) and Wei (1978) analyze the effects of
temporal aggregation on parameter estimation in a distributed lag model. Granger (1987) discusses the
implications of aggregation on systems with common factors. Other contributions in this area include Tiao (1972),
Stram and Wei (1986), Weiss (1984), Granger and Lee (1999), and Marcellino (1999), to name but a few.

In this paper, we examine the impact of temporal aggregation on the dynamic analysis and the forecasting
properties of a stable ARIMA(p,q) process. There is a sizable theoretical literature that investigates the impact of
temporal aggregation on ARIMA models (see Wei, 1990, and references therein).These studies are theoretical
and focus on the effects of temporal aggregation on the orders p an q of the ARIMA process. This study using
Monte Carlo simulation techniques, focus on the effects of using different selection criteria on the dynamic
impulse responses and the forecasting properties of a stable ARMA process estimated at 16 different aggregation
levels.



This article is organized as follows. Section Il presents some selection criteria used to determine the appropriate
p and g order of the ARIMA process. Section Il introduces the design of the simulation procedure. Section IV
provides the simulation results and the last section concludes.

THE OPTIMAL LAG ORDER IN AN ARIMA MODEL

We now review some selection criteria for the order of an ARIMA(p,q) process. These selection criteria are used
very often for the selection of the appropriate order of the p and g dimensions of an ARIMA process. These
criteria are:

Akaike Information Criterion (AIC) Test(Akaike 1969)

AIC(p,q)=Tlogo? +2(p+q) @)

Corrected Akaike Information Criterion AIC, Test (Hurvichm, C. M. and Tsai, C. 1993)
AIC.(p,q)=Tlogo? +2(p+q-1)+T(2+2log(27) +2logT —2log(t —2(p +q) —1) @

Bayesian Information Criterion (BIC) Test ( Amemiya, T. and R.Y. Wu 1972)

BIC(p.a)=T logo,” ~(T — p-q)loglt—(p+q)/T] @)
+(p+0)logT +(p+q)log|(p+q) (02 /072 ~1)|

Schwarz (SC) Test(Schwarz 1978)

SC(p,a)=Tlogo,” +(p+q)logT @)

Hannan — Quinn Criterion Test(Hannan and Quinn 1979)
HQ(p.q)=logo;” +(p+a)elog(logT)/T] ¢ 2 ©)

Bayesian Estimation Method (BEC) Test(Geweke and Meese 1981)
_ 2 2 _
BEC(p, q)— e +(p + q)GL Iog[T /(T L)] L=maximum number of p and q (6)

H 2
In addition to the above six criteria we used as well the RootMeanSquareError, the R? and the adjusted adj _R :

THE DESIGN OF THE MONTE CARLO SIMULATION

The simulations are conducted using the following stationary ARIMA(p,q) process:

y, =3+0.315y, , —0.8453y, , —0.1065y, , +0.785v, , +V, )
v, ~ N.1.D.(0,025) @®)

The impulse response function of the above process is given in figure 1. This impulse response has a duration of
141 periods and max=1.1 and min=-1.19.
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Figure 1. The Impulse Response of the stochastic process (7) & (8).

In order to schematize the effects of temporal aggregation on the dynamic characteristics and the
forecasting properties of the ARIMA(p,q) process (7)-(8) we applied 16 different level of temporal aggregation.
For each of the 16 different level of temporal aggregation we estimate the process (7)-(8) , selecting the
appropriate lag order using the above analysed selection criteria and obtained the impulse responses and the
analogous forecasts. The total number of the simulated observations was 1400 at the highest level of temporal
disaggregation and the experiment was replicated 3000 times. The number of the forecasted periods at the
highest level of temporal aggregation was 4.

A
Temporal aggregates are formed by averaging basic observations over nonoverlapping intervals. Let Yr
represent the temporally aggregated data:

Yt b= Cy, 9)

A .
where T s the temporal aggregated data , 1=123,...16

aggregation® matrix of the form :

J
——

11..1 00..0 ... 00..0 00..0
J

00..0 11..1 .. 00..0 00..0
j

——

00..0 00..0 .. 11.1 00.0

is the time aggregation level and Cisa time

100..0 00..0 .. 00..0 11.1] 10)

'For more about these Time - Aggregation relations using matrix approach, see: Gilbert C., 1977., pp. 223-225. A similar aggregation
A m-1
formulationis 'y , =— (z L')y, where L is the backshift operator on t.

j=0

3



In the simulation experiment we performed 3,000 iterations at 16 different but nested time aggregation
levels, in contrast with analogous research in which three or four (at the most) different time aggregation levels
have been used.

The steps of realization of these Monte Carlo experiments are the following:

e On the basis of the relations (7)-(8) in each iteration, we obtained 1400 simulated observations of the
dependent variable.

e For 16 different levels of time aggregation we estimated the ARIMA process using a Gauss-Newton?
nonlinear estimation technique.

e The estimated specification was then used to obtain ex-post forecasts for 4 observations at the highest
level of time aggregation (j=16). These forecasts were compared with the corresponding simulated
observations of the depended variable at the corresponding level of time aggregation ( j=2,3, ...,16).
In addition, we conducted analogous forecasting comparisons of these forecasts at a specific time
aggregation level(j=1,2,...,16), at the highest level of which j=16. To do this happen we aggregate the
forecasts at the analogous temporal aggregation level , using the relation:

YTF =Cy" (11)

with C an aggregation matrix defined as in (10). The comparisons were made between the actual values at the
highest temporal aggregation level and the aggregated forecasts.

In order to study the effects of the degree of time aggregation on the quantitative and qualitative characteristics
of the ex-post forecasting ability of the model, we used some well known forecasting criteria®.
Impulse responses comparisons were made after aggregating (for j=1,2,...... ,16) the simulated ‘actual’ responses

+th
at the highest level of temporal aggregation and the response on the estimated model and the ] tevel of temporal
aggregation. The criterion we used was the :

Mean Square Error :

Dur;

MSE; = (impul _e*; —impul _e ;)*/Dur,

= (12)
j=12,..16
- A. _ -
impul _e”; = C(impul _e;) (13)
Where:
impul _e%j = : : " :
—~ 17 Temporally Aggregated estimated impulse at the } degree of temporal aggregation.
i A Hul
impul _e ~ estimated impulse at the J degree of temporal aggregation.
— “th
Dur, Estimated Duration of the impulse response at the I tevel of temporal aggregation.

In order to get an idea about this experiment in Figure 2 we present graphically the impulse responses between
the estimated and the analogous time aggregated responses at the j=1,2,....,16 different level of temporal
aggregation.

2 Judge G., Griffiths W., Hill C., Lutkepohl H. and Lee Tsoung-Chao, 1984.
® For more see the Appendix of this paper.



Impulse Responces at Different of Time Aggregation Levels
Simulation Results
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Figure 2. Impulse Responses at Different Levels of Temporal Aggregation



THE SIMULATION RESULTS

According the simulations conducted in the previous section , we may conclude very briefly the following about
the effects of temporal aggregation on the forecasting properties and the dynamic characteristics of the estimated
ARIMA process.

Effects on the forecasting ability of the ARIMA process.

As the level of temporal aggregation increases ,the mean Root Mean Square Forecasts Error ( RMSE*)
which results from the forecast of an ARIMA (p,,q) process, increases as well.(Table 1). These results
confirms that the forecast can be more effective when a variable is used in its highest level of temporal
aggregation. The smallest RMSE is given by the Hannan & Quinn selection criterion.

The quality of the forecast made at the different level of temporal aggregation is analysed in Tables 1A
and 1B . It is obvious that as the degree of temporal aggregation increase, the Mean Bias Proportion of the
Mean Forecasts Error , increases rapidly , indicating that the temporal aggregations influence negatively
the quality of the forecast made (Table 1A). The same time, according to our results (Table 1B), as the
degree of temporal aggregation increases, the variance proportion of the MSE decomposition increases as
well, but not the same degree for all the selection criteria.

In Tables 2, 2A and 2B we present the same results with the previous tables, but with the only difference,
that the comparisons are made on the higher degree of temporal aggregation. So , we have
transformed(aggregate) our forecasts into forecasts to the highest level of temporal aggregation which is
level 16. This means that each forecast has aggregated accordingly, so that to reach the level 16 of
temporal aggregation and to allow for the analogous comparisons.

In Table 2, we present the mean Root Mean Square Forecasts Error between the actual and the forecasted
time series, having aggregated the forecast to the highest level of temporal aggregation as follows:

Yr " =cyh (14)
j=12,..16
with the matrix C as defined in (10).

Based on the results on Table 2,2A and 2B we may conclude that in most of the times when we want to
do effective forecasts is preferable to use our data to the highest level of temporal disaggregation and
after to aggregate them to the level we wanted them to forecast . Moreover , the results in Tables 2A and
2B , confirm that the use of data of high level of temporal aggregation decreases the effectiveness of our
forecasts not only quantitative but also qualitative.
+th

Finally, in Table 3 we present the Mean RMSE between the estimated actual response at the J degree of
temporal aggregation and the aggregated to the same degree “actual’® response. According to our results ,
it is obvious that the degree of temporal aggregation affects the impulse response functions of the
specified ARIMA model. This means that when we are interested for effective dynamic analysis results it
is important to use our data in the highest level of temporal aggregation.

CONCLUSION

In this short paper we analyse the effects of Temporal Aggregation on the dynamic characteristics and the

forecasting properties of a stable ARMA(p,q) process. Using Monte Carlo techniques we may conclude that
when we are interested for effective dynamic analysis and forecasts through an ARIMA process , it is important

* The Root Mean Square Forecasts Error is defined as:

1

T 2
(RMSE = \/? Zl(yt’* - yFt) ) where Yt = Actual data, Y+ =Forecasted data and T=the number of forecasting periods.

® Simulated in Figure 1 impulse response.



to use our data in the highest level of temporal aggregation.

As the degree of temporal aggregation increases , the Mean Root Mean Square Forecasts Error increases
rapidly when we compare our forecasts in the highest and the lowest degree of temporal aggregation. The same
time the impulse responses functions exhibit a high Mean Root Mean Square Error between the simulated
(actual) response and the temporal aggregated response at the analogous degree of temporal aggregation. This
means that when we are interested for effective dynamic analysis and effective forecasts it is important to use
our data in the highest level of temporal aggregation.

The results of our experiments complements other analogous theoretical researches for the effects of
temporal aggregation on estimating an ARIMA (p,q) process.

TABLES

Table 1. Mean Root Mean Square Forecasts Error ( RMSE®) of ARIMA (p,q) forecasts at different level of Temporal
Aggregation and different selections criteria.

Temporal

fggerfga“on AIC AIC, BIC sc HQ SBC Adj_R ? R? MSE

1 1,199037 1,197358 | 1,107098 | 1,19842 1197016 | 1,107753 | 1,19831 1,198178 | 1,198602
5 1,14768 1,100603 | 1,066996 | 1,135062 | 1,091011 | 1,125288 | 1,134641 113393 | 1,135112
10 2,55012 2401497 | 2,284805 | 2,517305 | 2,376588 | 2,484209 | 2,477003 2495859 | 2,508136
15 4,608609 4040792 | 3,767517 | 4444853 | 4,04362 4362437 | 4,346196 4,407657 | 4,410651
16 5,962376 5042412 | 4987815 | 5808181 | 5037412 | 5246457 | 5576265 5690924 | 5735879

Source: Our Estimates(Simulation Results).
AIC & AICc= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;
Adj R?

2
SBC=Schwarz criterion; = Adjusted R%; R ; MSE = Mean Square Error

Table 1A. Mean Bias Proportion’ of the ARIMA (p,q) forecast at different level of Temporal Aggregation and
different selections criteria.

Temporal

Aggregation .

If\?el ’ AlIC AlCc BIC SC HQ SBC Ad-l — R ? R2 MSE

1 0,003711 | 0,003185 0,002481 0,003505 0,002896 0,003387 0,003516 0,003519 0,003572
5 0,089861 | 0,06532 0,039519 0,083189 0,058939 0,082242 0,083606 0,082545 0,083336
10 0,152194 | 0,129843 0,092022 0,145019 0,12196 0,153385 0,136585 0,139244 0,141664
15 0,214333 | 0,208008 0,161176 0,198552 0,208013 0,242752 0,195137 0,193176 0,19335
16 0,188436 | 0,195009 0,178939 0,178517 0,194832 0,200364 0,169778 0,169373 0,172413

Source: Our Estimates(Simulation Results).
AIC & AIC.= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;

H 2
SBC=Schwarz criterion; AdJ - R
Table 1B. Mean Variance Proportion® of the MSE forecast decomposition at different level of Temporal Aggregation

2
= Adjusted R%; R ; MSE = Mean Square Error

® The Root Mean Square Forecasts Error is defined as:

—A —F

1o 2
(RMSE = \/? Zl(ytA - yFt) ) where yAt = Actual data, yFt =Forecasted data, Y t,Y t = mean values and T=the number of

forecasting periods.

" The Bias Proportion of the Mean Forecasts Error is defined as:

a1 2

uM = (y F - Yy A) /?z (th -y A ) where yAt = Actual data, Y Ft = Forecasted data and T=the number of forecasting periods
2

(57, -s*)

-:;Z(th - yAt)z

8 _The Variance Proportion of the Mean Forecasts Error is defined as: U s =



and different selections criteria.

Temporal

Aggregation

Iegvgel ’ AIC AlCc BIC SC HQ SBC Adj — R ? R2 MSE

1 0,57273 0,574258 0,575168 0,573093 0,574692 0,573634 0,573248 0,573378 0,573135
5 0,793897 0,904233 0,931747 0,813639 0,913306 0,864593 0,819242 0,816723 0,814141
10 0,661386 0,799385 0,8438 0,678092 0,809608 0,73934 0,696632 0,687451 0,680817
15 0,490503 0,698526 0,758639 0,511699 0,69863 0,595575 0,538348 0,526044 0,519605
16 0,451592 0,666307 0,703906 0,467429 0,666743 0,593505 0,505262 0,486956 0,4764

Source: Our Estimates(Simulation Results).
AIC & AIC.= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;

H 2
Adj_R 2
SBC=Schwarz criterion; J - = Adjusted R%; R ; MSE = Mean Square Error

Table 2: Mean Root Mean Square Forecasts Error (RMSE? ) between the actual and the forecasted time series at the
highest (j=16) level of temporal aggregation at different selections criteria.

Temporal
Aggregation AdJ R 2 ,
Level AIC AlCc BIC sc HQ SBC - R MSE

1 4,494094 4,31023 4,048282 4,434273 4,209698 4,398583 4,444214 4,435701 4,460074
5 35,77977 28,15364 19,78124 33,21705 26,14772 33,33639 33,35758 32,96164 33,23595
10 61,68502 54,65241 40,68359 58,44444 51,65727 62,03502 54,79268 55,80494 57,00541
15 49,11331 47,45389 37,84542 45,23678 4755765 54,55549 44,26951 44,35888 44,11867
16 37,9221 37,94207 36,55503 36,06123 37,80108 37,5302 33,90067 34,09132 34,69358

Source: Our Estimates(Simulation Results).
AIC & AIC.= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;

H 2
Adj_R 2
SBC=Schwarz criterion; J - = Adjusted R%; R ; MSE = Mean Square Error

Table 2A. Mean Bias Proportion between the actual and the forecasted time series at the highest (j=16) level of
temporal aggregation at different selections criteria.

Temporal

Aggregation

L:\?el ’ AIC AlCc BIC SC HQ SBC Ad-l —_ R ? R 2 MSE

1 0,301669 0,278657 0,249502 0,296247 0,266011 0,291236 0,296749 0,294943 0,297659
5 0,631671 0,537574 0,435078 0,627636 0,509086 0,605948 0,630383 0,627792 0,628591
10 0,684332 0,60002 0,514018 0,680615 0,581962 0,676642 0,665291 0,672939 0,677126
16 0,60237 0,584108 0,546261 0,590133 0,583737 0,618307 0,576859 0,576468 0,582523
17 0,590024 0,605129 0,568298 0,57756 0,60592 0,615559 0,558725 0,561178 0,565312

Source: Our Estimates(Simulation Results).
AIC & AICc= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;
Adj R®

2
SBC=Schwarz criterion; = Adjusted R%; R ; MSE = Mean Square Error

A F A F -~
where Yt =Actual data, Y t =Forecasted data .S 2] S y = Standard Deviation of Forecasted and Actual values and T=the number of

forecasting periods

® The Root Mean Square Forecasts Error is defined as:

1 o 2
(RMSE = \/? Zl(ytA —yF ) ) where Y™t = Actual data, Yt = Forecasted data and T=the number of forecasting periods.

8



Table 2B. Mean Variance Proportion between the actual and the forecasted time series at the highest (j=16) level of
temporal aggregation at different selections criteria.

Temporal

Aggregation AdJ R 2 )

Level AlIC AlCc BIC SC HQ SBC —_ R MSE

1 0,467827 0,480843 0,49922 0,471341 0,489719 0,474023 0,471256 0,472771 0,231649
5 0,314252 0,402894 0,476395 0,319246 0,425831 0,340518 0,316414 0,319033 0,052632
10 0,229254 0,290149 0,345188 0,234713 0,304719 0,227774 0,245326 0,24174 0,083425
15 0,244395 0,281403 0,338897 0,256921 0,281542 0,21725 0,261934 0,262348 0,127556
16 0,23368 0,294474 0,329176 0,244087 0,29499 0,250327 0,259445 0,255957 0,166335

Source: Our Estimates(Simulation Results).
AIC & AIC.= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;

Adj_R*_ R2
SBC=Schwarz criterion; - = Adjusted R% ; MSE = Mean Square Error

Table 3. Mean MSE between the estimated actual response at the j" degree of temporal aggregation and the
aggregated to the same temporal aggregation degree of the actual response.

Temporal

Aggregation

LS\?eI i AlC AIC, BIC sC HQ SBC AdJ — R ? R 2 MSE

1 1,760533 1,72424 1,718443 1,693042 1,80346 1,626019 1,693349 1,692709 1,760388
5 12,97921 21,60762 11,14216 8,952541 24,09635 14,49629 5,54555 4,455917 3,972629
10 11,897382 11,81666 15,84547 12,298239 12,5282 17,393704 8,207651 6,742036 12,465814
15 21,033535 15,75483 16,9814 11,21335 25,75866 13,70895 11,843247 11,478211 11,328278
16 21,481326 20,47592 22,79465 21,681013 20,35382 25,261796 12,331015 11,968766 11,771427

Source: Our Estimates(Simulation Results).
AIC & AIC.= Akaike’s information criterion and its corrected form, respectively; BIC = Bayesian information criterion; HQ = Hannan and Quinn information criterion;

_Adj_R*_ R2
SBC=Schwarz criterion; - = Adjusted R%; ; MSE = Mean Square Error
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