The benefits and challenges of causal machine learning

The benefits and challenges of causal machine learning

Topics: Statistics , Theory

Wednesday, 13 April 2022, 15:00-16:15

Room: Zoom

Presenter: Constantinou Anthony, Queen Mary University of London

The achievements of predictive machine learning have made clearer than ever that black-box solutions cannot satisfactorily inform human decision-making in critical areas such as medicine, economics and government policy. Because of this, we are slowly but steadily observing a shift, both in academia and industry, towards techniques that offer transparency and explainability. Causal Machine Learning (ML) represents the field of research in which algorithms aim to recover some form of causal representation or model from data. In this talk, I will explain why causal ML is emerging as a crucial approach to complement predictive ML, and share my thoughts on why adoption of these approaches has been slow, with little to moderate impact in practice.

 

Zoom link: https://zoom.us/j/97374751400?pwd=UjZ4cUVaSXZ2bnZUT1BNSVhySFlDQT09

See also

Department Of Economics Website

myEcon Newsletter

Join the notification list of the Department of Economics.