Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. When parametric assumptions do not hold or are difficult to verify, non-parametric regression models can provide a convenient alternative method for prediction. To this end, we consider an extension to the classical k-NN regression, termed a-k-NN regression, that yields a highly flexible non-parametric regression model for compositional data through the use of the a-transformation.
We compared maximum likelihood and the k-NN algorithm in the context of discriminant analysis with spherical data.
Join the notification list of the Department of Economics.